|  | 26 сентября 2017 | Новости науки и техники

Новая технология позволяет создавать микроскопические перестраиваемые лазеры

Перестраиваемый WGM-резонатор


Резонаторы, использующие в своих целях так называемый эффект шепчущей галереи (whispering gallery mode, WGM), уже используются некоторое время для создания микролазеров, датчиков, оптических переключателей, маршрутизаторов и т.п. Эти крошечные устройства используют явление, подобное акустическому эффекту, возникающему в круглых помещениях, таких, как некоторые соборы, музеи и художественные галереи. Распространение, отражение, наложение и фокусировка звуковых волн в таких помещениях позволяет четко услышать на его одной стороне то, что было произнесено шепотом на противоположной стороне.

Подобный эффект может наблюдаться и по отношению к электромагнитным волнам оптического диапазона. Когда свет запускается внутрь и храниться внутри активного сферического резонатора, на этот резонатор можно оказать дополнительное воздействие, что превратит его в источник монохроматического когерентного излучения, в лазер, другими словами. Однако, параметры WGM-резонатора, как и резонаторов других типов, определяются материалом и размерами устройства, в первую очередь, и некоторыми другими параметрами, в другую. Поэтому лазер, созданный на основе такого резонатора, может излучать свет, имеющий строго определенную частоту, которая напрямую зависит от резонансной частоты устройства.

Тем не менее, исследователям из Технологического института Карлсруэ (Karlsruhe Institute of Technology), Германия, удалось создать WGM-резонатор с перестраиваемой частотой, который является основой перестраиваемого нанолазера, лазера, способного излучать свет с различными длинами волн. Настройка резонатора производится путем изменения размеров и формы гибкого основания, на котором он установлен. Растяжение этого основания увеличивает расстояние между двумя половинками диска резонатора, что приводит к увеличению длины волны излучаемого лазером света.

Диск WGM-резонатора имеет диаметр 25 микронов, а его половинки разделены промежутком в 2.5 микрона. Половинки диска удерживается в пространстве двумя "ножками", которые являются частью пластикового основания, изготовленного из эластомера, материала, поддающегося сжатию или растяжению. При минимальной ширине промежутка, разделяющего половинки диска резонатора, спектр излучения лазера смешается в область синего света, а диапазон регулировки длины волны света лазера составляет несколько микрометров, что перекрывает весь видимый диапазон.

"Разработанная нами конструкция микролазера позволяет производить его "грубую" перестройку в очень широком диапазоне" - пишут исследователи, - "Такого диапазона перестройки практически невозможно или очень трудно достичь при использовании WGM-резонаторов других типов. Кроме этого, процесс перестройки в нашем случае является полностью обратимым".

А в своих дальнейших исследованиях ученые из Германии планируют произвести расчеты и изготовить перестраиваемые двойные WGM-резонаторы и резонаторы с двумя входами и выходами. Такие более сложные устройства могут использоваться в качестве оптических линий задержки, фильтров и других компонентов, на базе которых будут строиться более сложные оптоэлектронные системы для различных областей применения.




Ключевые слова:
Эффект, Шепчущая, Галерея, WGM, Свет, Длина, Волна, Резонатор, Лазер, Перестройка

Первоисточник

Другие новости по теме:
  • Создан самый высококачественный лазер, ширина полосы спектра которого соста ...
  • Созданы микрорезонаторы, позволяющие передавать 40 каналов данных в луче од ...
  • Управление квантовым состоянием нано-объекта впервые реализовано при помощи ...
  • С помощью лазера стало возможным создание "механического" типа компьютерн ...
  • Создан первый полностью оптический транзистор.




  • Информация

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.