Создан крошечный нанолазер, который может работать внутри тканей живых организмов

Свет лазераУченые из Северо-западного и Колумбийского университетов разработали новый тип крошечного лазера, обладающего полной биологической совместимостью и, как следствие, способного работать внутри тканей живых организмов, не нанося им никакого ущерба. Этот лазер имеет размер всего в 150 нанометров и нуждается в очень малом количестве энергии, на его основе можно будет создать новые методы профилактики и лечения неврологических заболеваний, технологий диагностики и т.п.
 | Опубликовано DrWho | Подробнее | Комментарии: 0
19 сентября 2019 | Новости науки и техники

Физики научились создавать и контролировать кристаллы света

Идеальный солитонный кристаллУченые-физики уже давно разработали специальные оптические резонаторы, способные преобразовывать лазерный свет в ультракороткие импульсы, движущиеся по окружности этих резонаторов. Более того, эти импульсы, получившие название "рассеянные солитоны Керра" (dissipative Kerr solitons), могут "размножаться" внутри резонатора, форма которого определяет форму и другие параметры импульсов света. Когда солитоны покидают пределы резонатора, они формируют серию импульсов, повторяющихся через стабильные интервалы времени, и, чем меньше диаметр резонатора, тем короче интервал времени следования импульсов, который может заходить в диапазон сотен гигагерц. Данная технология может быть использована в будущем для увеличения эффективности и качества работы оптических линий связи или стать основой новых сверхскоростных оптических сканеров LiDAR, обеспечивающих субмикронную точность.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые открыли еще одно свойство света

Свет лазераГруппа исследователей из нескольких научных учреждений Испании и США обнаружила новое свойство света, о котором не было известно ранее. Это свойство получило название "само-вращающий момент света" (light-self-torque), и его открытие содержит большой потенциал для многих областей науки и техники, таких как коммуникации и отображение информации, в которых свет играет главную роль.
 | Опубликовано Informatic | Подробнее | Комментарии: 1

Ученые воспроизвели звук с максимально возможным уровнем громкости

Создание звуковой волныГруппа исследователей из Лаборатории линейных ускорителей SLAC Стэнфордского университета создала то, что можно считать звуком с максимально возможным уровнем громкости. Для этого был использован один из самых мощных рентгеновских лазеров LCLS (Linac Coherent Light Source), луч которого был сфокусирован на тончайшей струйке воды. "Взрывное" испарение воды создало звуковую волну с невероятно высоким акустическим давлением, сила которого немного превысила отметку в 270 децибелов.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

На свет появился первый в своем роде лазерный радиопередатчик

РадиоволныГруппе исследователей из Гарвардского университета удалось передать в эфир аудиозапись одного из музыкальных произведений при помощи радиопередатчика, ключевым компонентом которого стал полупроводниковый лазер. Этот лазер используется в качестве источника радиочастотных волн, генератора, помимо этого он же выполняет функции модуляции передаваемых и демодуляции принимаемых сигналов. Данные исследования являются первыми шагами в направлении создания новых типов гибридных электронных фотооптических устройств, которые станут базой работы сверхскоростных систем беспроводной связи, Wi-Fi следующего поколения.
 | Опубликовано Electronic | Подробнее | Комментарии: 1

Поляритонный фильтр позволяет преобразовать свет обычного лазера в "квантовый свет"

Поляритонный фильтрМеждународная группа ученых продемонстрировала новый способ преобразования света, излучаемого обычным лазером, в так называемый квантовый свет. Особенностью такого света являются идентичные квантовые свойства его фотонов, которые выдвигаются на первый план по сравнению с другими свойствами этих частиц. В этом новом методе используется пленка, толщиной всего в несколько нанометров, изготовленная из арсенида галлия, полупроводникового материала, широко используемого в солнечных батареях. Эта пленка помещена между двумя зеркальными слоями, которые все вместе создают нечто вроде плоского оптического резонатора.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Исследователи создали антилазер, являющийся идеальным поглотителем идеальных электромагнитных волн

Поверхность метаматериалаИсследователи из университете Дюка, продолжая работу над идеальным поглотителем электромагнитных волн, созданными ими в 2017 году, обнаружили, что его очень легко можно превратить в нечто, называемое термином "обратно-временной лазер", в идеальный когерентный поглотитель. Лазер, как известно, является преобразователем энергии накачки в когерентный свет, волны которого колеблются в одной плоскости и имеют одну фазу. Обратный этому процесс заключается в поглощении всей энергии только двух или более идентичных электромагнитных волн, падающих на поверхность поглотителя с любой стороны, но в один и тот же момент времени.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

Физикам удалось получить каплю сверхэкзотической "электронной жидкости"

Электронная жидкостьБомбардируя сверхтонкий "бутерброд" из полупроводниковых материалов мощными, но короткими импульсами лазерного света, ученые-физики из Калифорнийского университета получили каплю квантовой "электронной жидкости", обладающей рядом уникальных свойств. Но самым примечательным в этом деле является то, что образец этой электронной жидкости был впервые получен при комнатной температуре. Данное достижение открывает новый путь к разработке высокоэффективных устройств, использующих электромагнитное излучение терагерцового диапазона, лежащее между инфракрасным светом и микроволновым излучением. Более того, электронная жидкость может быть использована в фундаментальных физических исследованиях, проводимых на бесконечно малом масштабном уровне, и это, в свою очередь, позволит создать так называемые квантовые метаматериалы, структура которых упорядочена до уровня единственных атомов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые впервые получили лазерный свет, имеющий форму фракталов

Фрактальный светФракталы каждый из нас видит в окружающем нас мире по многу раз за один день, даже не подозревая об этом. Раковина улитки, листья растений и рисунок изморози на лобовом стекле автомобиля - это лишь немногие из примеров фракталов, существующих в природе. С точки зрения науки фракталы - это формы с повторяющейся геометрией их структуры, которая сохраняется как при увеличении масштаба, так и при его уменьшении. Еще два десятилетия назад, в 1998 году, ученые предсказали, что можно получить лазерный свет, имеющий фрактальную форму, используя для этого лазер специальной конструкции. И лишь буквально недавно ученым удалось воплотить это предсказание в жизнь, впервые в истории получив образцы фрактального лазерного света.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Разработана технология передачи тайных аудио-сообщений при помощи лазерного света

Лазерный светНовая технология, разработанная в одной из лабораторий Массачусетского технологического института, позволяет передавать аудио-сообщения, предназначенные для ушей только одного человека, на расстояние до нескольких метров. Ключевую роль в этой технологии играет свет специально настроенного лазера, который возбуждает и заставляет колебаться молекулы воды, находящиеся в воздухе. Область применения такой технологии достаточно широка, начиная от военных технологий, целевой рекламы и многого другого, где в силу каких-либо причин использование наушников является неприемлемым или нецелесообразным.
 | Опубликовано Informatic | Подробнее | Комментарии: 4

Создано ультразвуковое устройство, чувствительность которого позволяет "услышать" движение отдельных молекул

Ультразвуковой датчикУльтразвуковые технологии широко используются людьми в течение нескольких десятилетий, обеспечивая неразрушающий контроль технологических процессов, позволяя медикам увидеть внутренние органы человека без необходимости хирургического вмешательства и т.п. Вполне естественно, что с увеличением общего уровня развития современных технологий, ультразвуковые технологии так же становятся более совершенными, чувствительными и функциональными. И то, чего удалось добиться исследователям из университета Квинсленда, можно охарактеризовать фразой "достижение совершенства", разработанное ими ультразвуковое устройство имеет столь высокую чувствительность, что оно способно "услышать" колебания отдельных молекул воздуха или же перемещения отдельных живых клеток, в том числе и бактерий.
 | Опубликовано Informatic | Подробнее | Комментарии: 1

Созданы атомные часы с рекордными характеристиками, которые могут измерить пространственно-временные искажения и сигналы от темной материи

Новые атомные часыНе так давно специалисты американского Национального института стандартов и технологий (National Institute of Standards and Technology, NIST) завершили создание новых атомных часов. Проведенные при помощи установки эксперименты показали, что новые часы обладают рекордными показателями сразу по трем основным характеристикам. Это, в свою очередь, означает, что при помощи этих часов можно провести очень тонкие измерения, такие, как измерения пространственно-временных искажений, возникающих вследствие неоднородности гравитационного поля Земли, измерения очень слабых сигналов от неуловимой темной материи и многое другое.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Рентгеновский лазер EuXFEL приближается к точке выхода на полную мощность

Лазер EuXFELНапомним нашим читателям, что европейский лазер на свободных электронах EuXFEL, являющийся сейчас самым большим в мире подобным лазером, начал ускорять первые электроны в 2015 году, а первые вспышки рентгеновского излучения были получены на этой установке в мае 2017 года. В сентябре прошлого года это грандиозное сооружение, построенное в недрах 3.4-километрового туннеля неподалеку от Гамбурга, Германия, было отдано в распоряжение ученых. И уже в августе этого года была опубликована первая научная работа, основанная на результатах, полученных при помощи лазера EuXFEL.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Новый электрооптический лазер вырабатывает импульсы, в 100 раз более быстрые, чем вырабатывают другие высокоскоростные системы

Оптическая частотная гребенкаУченые-физики из американского Национального института стандартов и технологий (NIST), используя достаточно обычную и традиционную электронику, создали лазер, способный вырабатывать импульсы света, в сто раз более быстрые, чем импульсы, вырабатываемые другими сверхскоростными лазерными системами. Данное достижение может дать мощный толчок развитию наук, изучающих быстропротекающие процессы, такие, как биохимические процессы, происходящие в материалах биологического происхождения, химические реакции и процессы взаимодействия света с материей различного рода.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Нобелевская премия 2018 года в области физики присуждена за создание "инструментов, сделанных из света"

Нобелевские лауреатыНобелевская премия 2018 года в области физики была присуждена Артуру Ашкину (Arthur Ashkin), Жерару Муру (Gerard Mourou) и Донне Стрикленд (Donna Strickland) за их новаторские разработки, позволившие превратить лазерный свет в мощные научные инструменты. К примеру, Артур Ашкин, исследователь из лаборатории Bell Labs, является изобретателем оптического пинцета, сфокусированного особым образом луча света, которым можно захватывать микроскопические частицы, такие как живые клетки, и манипулировать ими для их тщательного и неразрушающего изучения.
 | Опубликовано Informatic | Подробнее | Комментарии: 0