"Нанопроводниковые" транзисторы с фотонным управлением - новый путь к реализации технологий оптических вычислений

Нанопроводниковый транзистор с фотонным управлениемИдея замены электронов фотонами света и создание вычислительных систем, способных работать буквально со скоростью света, витает в научном сообществе уже достаточно долго. Ученые из разных стран разработали ряд фотонно-электронных компонентов, которые смогут стать в будущем основой таких систем, однако, в большинстве случаев, при работе компонентов все же требуется выполнять преобразование оптических сигналов в электрические и наоборот при помощи чисто электронных цепей. А это, в свою очередь, значительно снижает эффективность и быстродействие вычислительной системы.
 | Опубликовано Electronic | Подробнее | Комментарии: 1

Графен стал основой материала, в 10 раз более прочного и в 20 раз более легкого, нежели чем сталь

Модель материалаТо, что вы видите на первом из приведенных здесь снимков, является моделью структуры нового искусственного материала, имеющего целый ряд уникальных качеств. Этот материал невероятно прочен, он обладает высокими электрическими, тепловыми, оптическими и химическими свойствами. А основой этого является графен, которому исследователи из Массачусетского технологического института искусственно дали третье пространственное измерение, получив материал, в десять раз более прочный и в двадцать раз более легкий, нежели чем сталь.
 | Опубликовано Informatic | Подробнее | Комментарии: 6
24 января 2015 | Нанотехнологии

Графен, изготовленный при помощи лазера - идеальный вариант для производства тонких и гибких суперконденсаторов

Пористый графенС момента его открытия графен, форма углерода, кристаллическая решетка которого имеет одноатомную толщину, помимо всего прочего рассматривался в качестве альтернативы электродам из активированного угля, используемым в суперконденсаторах, конденсаторах с большой емкостью и малыми токами собственной утечки. Но время и проведенные исследования показали, что графеновые электроды работают не намного лучше, чем электроды из микропористого активированного угля, и это послужило причиной снижения энтузиазма и сворачивания ряда исследований. Тем не менее, графеновые электроды обладают некоторыми неоспоримыми преимуществами по сравнению с электродами из пористого углерода. Графеновые суперконденсаторы могут работать на более высоких частотах, а гибкость графена позволяет создавать на его основе чрезвычайно тонкие и гибкие устройства аккумулирования энергии, которые как нельзя лучше подходят для использования в носимой и гибкой электронике.
 | Опубликовано NanoMan | Подробнее | Комментарии: 1

Микропористый алюминиевый материал способен увеличить дальность передвижения автомобилей на 200 процентов.

Строение алюминиевого микропористого материалаСтрах того, что электрический автомобиль, обладающий в настоящее время сравнительно небольшой дальностью передвижения, исчерпав заряд аккумуляторных батарей, остановится в самом неподходящем месте, остается главным барьером, который препятствует широкому распространению электрических автомобилей. Но новый материал, разработанный японской компанией Sumitomo Electric может смягчить вышеуказанную ситуацию, ведь с его помощью емкость литий-ионных аккумуляторов может быть увеличена в 1.3 - 3 раза, а это позволит увеличить дальность поездки электрических автомобилей на 50-200 процентов. К примеру, с новыми аккумуляторами дальность поездки Nissan LEAF составила бы от 175 до 352 км, а электромобиля Tesla Roadster - от 589 до 1178 км, чего уже вполне достаточно, что бы успокоить большинство водителей.
 | Опубликовано Energetic | Подробнее | Комментарии: 4