Разработана технология производства деградируемых электронных компонентов из пластика на основе кукурузного крахмала

Электронный мусорСогласно данным статистики, собранных институтом Организации Объединенных Наций, в 2014 году количество электронного мусора на нашей планете увеличилось на 42 миллиона тонн. Большую часть этого мусора составляют устаревшие электронные устройства, компьютеры и мобильные телефоны, которые их владельцы поменяли на более современные модели. Следует отметить, что утилизация электронного мусора является делом сложным и затратным, и даже с учетом извлекаемых из этого мусора драгоценных металлов и прочих имеющих высокую ценность материалов его переработка не окупает саму себя.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

Ученые создали надежные полупроводниковые источники абсолютно идентичных единичных "квантовых" фотонов

Источники фотоновОдним из элементов будущих квантовых компьютеров являются матрицы надежных источников единичных фотонов, при помощи которых кодируется передаваемая и обрабатываемая информация. Большинство ученых считают квантовые точки различных типов идеальными кандидатами на "должность" таких источников. Однако исследователи из университета Цукубы (University of Tsukuba), Япония, продемонстрировали, что арсенид галлия (GaAs), полупроводниковый материал с добавками атомов некоторых других элементов, является более надежным источником единичных фотонов, нежели квантовые точки любых типов. Использование источников на базе допированного арсенида галлия позволит получить более четкую и определенную последовательность фотонов, при этом, параметры фотонов, излученных из одного или различных таких источников, практически не отличаются друг от друга.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
28 декабря 2016 | Энергетика

Графеновые квантовые точки могут использоваться для превращения углекислого газа в жидкое топливо

Структура катализатораСписок достоинств графена, одного из самых удивительных материалов на свете, пополнился еще одним пунктом. Группа исследователей из университета Райс (Rice University) использовала допированные азотом графеновые квантовые точки (nitrogen-doped graphene quantum dot, NGQD) в качестве катализатора электрохимических реакций, использующих углекислый газ и другие вещества, на выходе которых получается этилен и этанол. А эффективность такого графенового катализатора приближается к эффективности традиционных металлических катализаторов на основе меди, золота и платины.
 | Опубликовано Energetic | Подробнее | Комментарии: 0

Ученым удалось произвести наблюдения перемещения отдельных атомов внутри другого материала

Перемещения атомов примесейИсследователи из Национальной лаборатории Ок-Ридж (Oak Ridge National Laboratory, ORNL) американского Министерства энергетики впервые в истории науки получили возможность непосредственного наблюдения движения атомов одного материала внутри другого материала, так называемого явления диффузии. Результаты таких наблюдений дадут ученым в руки возможность беспрецедентного понимания процессов, происходящих в различных материалах, оказывающих влияние на продолжительность срока службы и на надежность изделий из этих материалов.
 | Опубликовано Informatic | Подробнее | Комментарии: 2

Создан высокоскоростной оптический транзистор, содержащий единственный крошечный нано-алмаз

Кристалл алмазаВ одном из своих последних исследований ученые из Института фотонных наук (Institute of Photonic Sciences, ICFO) продемонстрировали, что единственным крошечным кристаллом алмаза можно управлять как оптическим ключом, переключая его в состояние, в котором он пропускает или не пропускает проходящий через него луч света лазера. Такое поведение позволило превратить нано-алмаз в оптический транзистор, способный переключаться с невероятно высокой скоростью, но самое интересное заключается в том, что этот алмазный транзистор оказался работоспособным при нормальной температуре окружающей среды.
 | Опубликовано Electronic | Подробнее | Комментарии: 2

Новый материал-хамелеон скроет любые объекты от взгляда инфракрасных камер

Танк в инфракрасном диапазонеПроводя исследования в своей лаборатории, группа ученых-физиков из Школы технических и прикладных наук (School of Engineering and Applied Sciences,SEAS) Гарвардского университета поместила пластину, покрытую слоем специального материала, перед объективом инфракрасной камеры и начала поднимать температуру этой пластины. Первоначально поведение образца никак не отличалось от поведения других материалов, при температуре в 60 градусов по шкале Цельсия материал светился на экране тепловизора сине-зеленым цветом, при 70 градусах его цвет изменился на желто-красный, а при 74 градусах материал приобрел темно-красный оттенок. Но, как только температура материала превысила отметку в 80 градусов, его цвет изменился на темно-синий, что соответствует температуре менее 60 градусов, и при дальнейшем нагреве материал становился все "холоднее и холоднее" для "взгляда" инфракрасной камеры.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

"Сияй и лети!" - ученым с помощью лазера удалось заставить левитировать крошечный кристалл алмаза

Алмазная наночастица в лазерной ловушкеКрошечное пятнышко яркого зеленого света, которое можно увидеть на приведенном выше снимке, является частичкой алмазной "пыли", пойманной в энергетическую ловушку луча лазерного света. Этого удалось добиться группе исследователей из университета Рочестера (University of Rochester), возглавляемой профессором Ником Вэмивэкасом (Nick Vamivakas), которые изучают физические явления, происходящие на границе между макро- и квантовым миром.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Крошечные алмазные термометры могут измерить температуру в разных частях одной живой клетки

Алмазный термометрОказывается, алмазы представляют собой ценность не только для любителей ювелирных изделий. В последнее время исследователи все чаще и чаще обращают свое внимание к этой форме углерода с целью использования уникальных физических, химических и оптических свойств алмазов в электронике, в области квантовых вычислений и во многих других областях науки и техники. А недавно исследователи из Гарвардского университета выяснили, как превратить крошечные кусочки алмаза в самые маленькие термометры в мире, настолько маленькие, что с их помощью можно с высокой точностью измерить температуру различных частей отдельно взятой живой клетки.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые сделали элементы транзисторной логики и логические элементы из нелегированный кремниевых нанопроводников.

Строение транзистора на основе кремниевых нанопроводовФранцузские исследователи успешно изготовили транзисторы и два типа диодов из нелегированных кремниевых нанопроводов (undoped silicon nanowires, SiNW), объеденив их в единый элемент, реализующий логическую функцию И-НЕ. Электронные приборы нанометрового масштаба, изготовленные из кремниевых нанопроводов, в последнее время привлекают к себе все большее внимание со стороны ученых. Применение таких полупроводниковых приборов обещает существенное уменьшение размеров электронных схем, что является немаловажным фактором для электронной, оптоэлектронной и биохимической промышленности.
 | Опубликовано Electronic | Подробнее | Комментарии: 6

Созданы первые квантовые биты, функционирующие при комнатной температуре.

Квантовый битУченые из Гарвардского университета сделали большой шаг на пути практической реализации квантовых вычислений, создав квантовые биты, способные работать и существовать внутри твердотельной системы при комнатной температуре. В настоящее время для создания квантовых битов (кубитов) используют целый комплекс сложного и невероятно дорогого оборудования, позволяющего захватить один единственный атом и электрон в ловушку, охладить эту систему практически до абсолютного нуля в условиях чрезвычайно глубокого вакуума.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

Новый "алмазный светодиод" способен излучать свет единичными фотонами.

Структура алмазного светодиодаВ настоящее время во многих областях науки и техники используются манипуляции с единственными фотонами света, к таким областям сразу можно отнести области квантовых вычислений, квантового управления, квантовой криптографии и коммуникаций. Но, к сожалению, процесс излучения света в виде единичных фотонов требует использования специальных наноматериалов, находящихся при сверхнизких температурах. Однако, группа исследователей, в состав которой вошли ученые и исследователи из Японии, Германии и Венгрии, создала на основе алмаза сложное полупроводниковое устройство, весьма напоминающее по структуре светодиод, которое способно излучать единственные фотоны света, причем, при комнатной температуре.
 | Опубликовано Electronic | Подробнее | Комментарии: 2