Компания Sony создала датчик для камер смартфонов, способный снимать со скоростью 960 кадров в секунду

Структурная схема датчикаСпециалисты группы компаний Sony Semiconductor Solutions Corp., Sony Semiconductor Manufacturing Corp. и Sony LSI Design Inc разработали новый тип CMOS-датчика, в структуру которого были включены элементы цифровой обработки сигналов и динамическая память DRAM. За счет такой высокой степени интеграции новый датчик позволяет производить съемку видео с высоким разрешением со скоростью до 960 кадров в секунду, не сильно нагружая при этом центральный процессор, что делает этот датчик идеальным для использования в смартфонах и другой портативной электронике.
 | Опубликовано Informatic | Подробнее | Комментарии: 4

Японцы создали первый дисплей, имеющий уровень прозрачности 80 процентов

Прозрачный жидкокристаллический дисплейСпециалисты японской компании Japan Display Inc (JDI) разработали первый дисплей, имеющий коэффициент прозрачности на уровне 80 процентов. Этот дисплей был продемонстрирован на технологической выставке, проходившей в Токио 25 января 2017 года, а при помощи использованных в нем технологий в подобный дисплей можно будет превратить окно, зеркало, витрину магазина и лобовое стекло автомобиля. Специалисты компании JDI планирую разработать ряд приложений и драйверов для нового дисплея, которые позволят использовать его в системах дополненной и смешанной реальности.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Получены первые образцы оксидного полупроводника одноатомной толщины

Полупроводник одноатомной толщиныГруппа исследователей из Национального института науки и техники Ульсана (Ulsan National Institute of Science and Technology, UNIST), Корея, возглавляемая профессором Зонгуном Ли (Zonghoon Lee), разработала новый метод производства самого тонкого на сегодняшний день оксидного полупроводника. Этот материал, оксид цинка одноатомной толщины, открывает массу новых возможностей для создания тонких, прозрачных и гибких электронных устройств, дисплеев и т.п.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

Пространственно-временные кристаллы - абсолютно новая форма материи

Пространственно-временной кристаллУ большинства людей понятие "кристалл" ассоциируется с алмазами, полудрагоценными камнями или крупинками обычной соли. Все названные выше вещи имеют одно общее свойство - элементы их упорядоченной структуры повторяются в пространстве бесчисленное количество раз. Но на свете могут существовать и более экзотические кристаллы, к примеру такие, структура которых повторяется не только в пространстве и во времени. Возможность существования таких кристаллов является предметом горячих споров со стороны ученых, но Норману Яо (Norman Yao), физику из Калифорнийского университета в Беркли, в свое время удалось создать точное описание принципов "работы" пространственно-временных кристаллов, найти способы их создания и измерения основных параметров. Более того, взяв за основу работу Яо, две независимые группы ученых добились успехов в создании таких кристаллов, которые, безусловно, можно назвать еще одной формой материи.
 | Опубликовано Informatic | Подробнее | Комментарии: 4

Новый метаматериал позволит автомобилю стать "подушкой безопасности" для себя и для пассажиров

Структура метаматериалаПрочность материала, из которого изготовлен некий объект, определяет то, что случится с этим объектом в случае его столкновения с чем-нибудь или падения с высоты. Однако, исследователи из Мичиганского университета разработали сложный материал, метаматериал, который меняет свою твердость и прочность в ответ на слабое напряжение, возникающее в результате воздействия внешних сил.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Создано суперадгезивное покрытие, контролируемое при помощи ультрафиолетового света

Адгезионный материалНемногочисленная группа ученых из Кильского университета (Kiel University), Германия, разработала новую суперадгезивную технологию, использующую принципы, реализованные природой в виде поверхности конечностей гекконов. Мы уже достаточно часто рассказывали об успешных и не очень успешных попытках повторения данных принципов, но практически во всех разработанных технологиях для управления адгезионными свойствами материала использовалось тепло или специализированная электроника. Принцип же управления свойствами материала, разработанного немецкими учеными гораздо более прост, для изменения "липкости" требуется всего лишь осветить его ультрафиолетовым светом с соответствующими параметрами.
 | Опубликовано Informatic | Подробнее | Комментарии: 1
16 января 2017 | Нанотехнологии

Ученые "завязали" самый сложный из самых маленьких "узлов"

Молекулярный узелУченые из Школы химии Манчестерского университета, возглавляемые профессором Дэвидом Ли (David Leigh), произвели на свет самую "запутанную" молекулярную структуру из всех известных современной науке. Для этого ими был использован разработанный ими же метод "плетения" молекулярных цепочек, при помощи которого можно создавать сколь угодно сложные и запутанные молекулярные "узлы". А это, в свою очередь, может быть использовано при создании нового поколения сложных "умных" материалов.
 | Опубликовано NanoMan | Подробнее | Комментарии: 2

Графен стал основой материала, в 10 раз более прочного и в 20 раз более легкого, нежели чем сталь

Модель материалаТо, что вы видите на первом из приведенных здесь снимков, является моделью структуры нового искусственного материала, имеющего целый ряд уникальных качеств. Этот материал невероятно прочен, он обладает высокими электрическими, тепловыми, оптическими и химическими свойствами. А основой этого является графен, которому исследователи из Массачусетского технологического института искусственно дали третье пространственное измерение, получив материал, в десять раз более прочный и в двадцать раз более легкий, нежели чем сталь.
 | Опубликовано Informatic | Подробнее | Комментарии: 6

Материал, созданный в HRL Laboratories, официально становится самым легким материалом на свете

Самый легкий материалВ свое время мы рассказывали нашим читателям, как специалистам компании HRL Laboratories, Калифорнийского университета в Ирвине и Калифорнийского технологического института удалось удивить весь мир, опубликовал фото куска металлического материала, имеющего микроструктуру наподобие кристаллической решетки, который лежит на "шапочке" одуванчика. И лишь недавно этот материал, изготовленный из фосфида никеля, получил свое место в Книге мировых рекордов Гиннеса в качестве самого легкого материала на свете.
 | Опубликовано Astronaut | Подробнее | Комментарии: 4

Компания Hitachi создала сверхтонкую безлинзовую камеру

Безлинзовая камера HitachiСпециалисты компании Hitachi Ltd разработали новую технологию формирования изображений, которая была воплощена в виде опытного образца тонкой безлинзовой камеры. Такая камера по качеству не может сравниться с камерами с высококачественными объективами, но за счет своей простоты, малых размеров и малой стоимости она может найти применение в потребительских устройствах низшей ценовой категории, стать "глазами" автомобилей, роботов и систем искусственного интеллекта.
 | Опубликовано Informatic | Подробнее | Комментарии: 1

Ученые создали первый в своем роде пространственно-временной кристалл

КристаллУченые из университета Мэриленда (University of Maryland) и Калифорнийского университета в Беркли (University of California-Berkeley) успешно создали нечто, создание чего считалось ранее теоретически невозможным. Этим нечто является цепочка ионов, которая представляет собой первое воплощение так называемого пространственно-временного кристалла, кристалла, структура которого состоит из элементов, повторяющихся не только в пространстве, но и во времени. Само существование таких кристаллов нарушает некоторые из фундаментальных физических законов, что служит причиной возникновения ряда экзотических эффектов. К примеру, часы, построенные на базе такого кристалла, будут "тикать" и после тепловой смерти Вселенной, в момент, когда все движение прекратится и время, по мнению некоторых ученых, попросту остановится.
 | Опубликовано Informatic | Подробнее | Комментарии: 6

Ученые создали "нейтронные голограммы"

Нейтронная голограммаВпервые в истории науки, группа ученых из американского Национального института стандартов и технологий (National Institute of Standards and Technology, NIST) создала голографические изображения больших трехмерных объектов, используя для этого не лучи лазерного света, а лучи нейтронов. Такие "нейтронные" голографические изображения содержат информацию о внутреннем устройстве исследуемых объектов, на что принципиально неспособны традиционные оптические голограммы.
 | Опубликовано Informatic | Подробнее | Комментарии: 2
25 октября 2016 | Нанотехнологии

Создан самый простой и эффективный на сегодняшний день квантовый каскадный лазер

Квантовый каскадный лазерГруппа исследователей из университета Центральной Флориды создала самый эффективный на сегодняшний день квантовый каскадный лазер. Помимо высокой эффективности, этот лазер имеет меньшие размеры (3.15мм на 9мкм) и более простую структуру, нежели чем все подобные созданные ранее, благодаря чему производство таких устройств обходится в приемлемую сумму.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0
14 августа 2016 | Космос и Авиация

Ученые получили доказательства, что в центре Млечного Пути находится огромная Х-образная структура

Галактика Млечного ПутиДвое ученых-астрономов обнаружили ряд убедительных доказательств тому, что в центральной части нашей галактики, галактики Млечного Пути, так называемом балдже, находится огромная Х-образная структура, состоящая из скоплений звезд. Имеющиеся компьютерные модели, наблюдения за другими и нашей собственной галактикой содержали ряд подсказок относительно возможности факта существования такого образования. Но до последнего времени еще никому не удавалось увидеть эту структуру непосредственно, что служило причиной относительно слабого интереса к этому факту со стороны ученых.
 | Опубликовано Astronaut | Подробнее | Комментарии: 0

Разработана новая технология управления потоками света

Устройство для управления потоком светаПредставьте себе устройство, которое в определенный момент становится прозрачным для света с определенными длинами волн и перестает быть прозрачным в последующий момент, реагируя, таким образом, на управляющие сигналы, подаваемые извне. Такой оптический ключ, без сомнения, может стать основой множества технологий в области оптики, электроники и других смежных с ними областях. А первый шаг к созданию такого универсального ключа сделали исследователи из Школы технических и прикладных наук университета Буффало.
 | Опубликовано Electronic | Подробнее | Комментарии: 0