Ученым удалось создать миниатюрный ключевой компонент будущего квантового компьютера

Миниатюрный микроволновый циркуляторГруппа исследователей из Сиднейского университета, Сэнфордского университета и компании Microsoft добилась успеха в создании миниатюрного варианта одного из ключевых компонентов, используемых в технологиях квантовых вычислений. Помимо этого, данная работа является первым случаем практического применения экзотического состояния материи, которое называется топологическим изолятором. Топологические изоляторы были открыты только в 2006 году и за их открытие была присуждена Нобелевская премия по физике 2016 года.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Самая тонкая в мире голограмма может стать основой трехмерных дисплеев для смартфонов и компьютеров

Голографическое изображениеУровень развития современных голографических технологий еще очень далек от "чудес", демонстрируемых нам в различных научно-фантастических фильмах. Но сомневаться в скором или не очень скором появлении реальных голографических технологий совершенно не приходится. Момент появления этих технологий стал еще на один шаг ближе, благодаря работе исследователей из института RMIT, Австралия, и пекинского Технологического института, которые создали самый тонкий голографический дисплей на сегодняшний день, закодировав трехмерное изображение в слое гибкого и прозрачного материала, толщиной всего в 25 нанометров.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученым удалось вырастить первые образцы удивительного двухмерного материала - дителлурида вольфрама

Дителлурид вольфрамаГруппа ученых из Пенсильванского университета стала первой, кому удалось вырастить образцы нового уникального двухмерного материала, толщина которого равна трем атомам и который называется дителлурид вольфрама. В отличие от более изученных двухмерным материалов, дителлурид вольфрама обладает тем, что называется топологическим электронным состоянием. Это, в свою очередь, означает, что материал может обладать сразу несколькими различными электронными свойствами, а не одним, как другие материалы.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые создали "энергетические" квазичастицы нового типа, называемые топологическими плекситонами

Движение плекситонаГруппа ученых из Калифорнийского университета в Сан-Диего, Массачусетского технологического института и Гарвардского университета разработали метод создания новых квазичастиц, которые получили название топологические плекситоны (topological plexcitons). Эти квазичастицы, способные переносить энергию, возникают при наличии нескольких условий и их можно использовать для создания новых видов солнечных батарей, миниатюрных электронно-оптических схем и т.п.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые научились получать электрический ток без затрат энергии

Взаимодействие атомовГруппа китайских и японских ученых продемонстрировала, что в недалеком будущем может стать возможным создание нового класса электронных устройств, отличающихся крайне низким расходом энергии. Основой этих устройств станут тонкие пленки сложного материала, допированного хромом теллурида сурьмы-висмута (Cr-doped (Sb, Bi)2Te3). При чрезвычайно низкой температуре электрический ток течет по краям пленки этого материала без потерь энергии и для этого не требуется воздействия внешнего магнитного поля. Такое необычное явление происходит из-за уникальных ферромагнитных свойств материала, хотя ученым пока еще не до конца понятно, что же именно является причиной появления этих свойств у материала.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

Станен - новый материал одноатомной толщины, который может потеснить графен в области электроники

Структура станенаВполне вероятно, что графену придется немного подвинуться с первого места пьедестала почета, которое он занимает в качестве самого перспективного материала для создания электронных устройств и микропроцессоров следующих поколений. А сместить оттуда графен сможет новый материал, станен (Stanene), который также является материалом одноатомной толщины, состоящим из атомов олова и атомов фтора. Согласно расчетам ученых-физиков из Стэндфордского университета и Национальной лаборатории линейных ускорителей SLAC американского Министерства энергетики (US Department of Energy, DOE), этот материал может стать первым в мире материалом, проводящим электрический ток со 100-процентной эффективностью, как при комнатной температуре, так и при более высоких температурах, при которых работают кристаллы современных микропроцессоров.
 | Опубликовано Electronic | Подробнее | Комментарии: 4

"Волшебный" скотч позволил ученым получить новый высокотемпературный сверхпроводящий материал.

СкотчСверхпроводники - это такие материалы, которые при определенных условиях обладают нулевым электрическим сопротивлением и проводят электрический ток практически без потерь. К сожалению, над проблемой создания высокотемпературных сверхпроводников, материалов, обладающих сверхпроводимостью при температурах значительно выше абсолютного нуля, ученые бьются по сей день, и не слишком успешно. Среди материалов существуют еще такие материалы, как полупроводники, которые сейчас повсеместно используются в электронике. Полупроводники проводят электрический ток значительно хуже сверхпроводников, но работают при температуре нормальных условий окружающей среды. До последнего времени ученым не получалось создать материал, который совмещает в себе свойства сверхпроводников и полупроводников, до того момента, когда кому-то не пришло в голову использовать для этого нечто вроде двухстороннего липкого скотча.
 | Опубликовано Electronic | Подробнее | Комментарии: 5