Коллайдер следующего поколения сократится в размерах и потеряет в мощности

Линейный ускорительМеждународный комитет ICFA (International Committee for Future Accelerators), отвечающий за проблемы сооружения нового коллайдера, ускорителя частиц следующего поколения, выдвинул ряд рекомендаций о уменьшении размеров будущего сооружения и снижения в два раза его мощности. Некоторые из ученых сочли эти рекомендации весьма странными и разочаровывающими в свете того, что в экспериментах на Большом Адронном Коллайдере (БАК) в течение нескольких последних месяцев перестали появляться даже следы новых, неизвестных ранее частиц. Другими словами, БАК уже практически полностью исчерпал все свои возможности, несмотря на проведенную не так давно модернизацию и повышение мощности ускорителя.
 | Опубликовано Informatic | Подробнее | Комментарии: 5
8 ноября 2017 | Космос и Авиация

Инструмент CALET, установленный на космической станции, начал производить первые измерения параметров высокоэнергетических электронов

Инструмент CALETИнструмент CALET (CALorimetric Electron Telescope), установленный на Международной космической станции, успешно произвел первые высокоточные измерения параметров электронов с энергией до 3 ТэВ, которые являются одной из составных частей излучения, пронизывающего все космическое пространство. CALET установлен на борту японского экспериментального модуля "Exposed Facility" космической станции и его измерения являются первыми подобными измерениями, проведенными за всю историю изучения космического пространства.
 | Опубликовано Astronaut | Подробнее | Комментарии: 0

Крошечные наномагниты могут сохранять стабильность при левитации, благодаря квантовым эффектам

Левитирующий магнитГруппа исследователей из Института теоретической физики Инсбрукского университета, Института квантовой оптики Макса Планка, Мюнхен, Германия, и Института квантовой информатики и квантовой оптики австрийской Академии наук продемонстрировали, что ограничения так называемой теоремы Ирншоу (Earnshaw's theorem) могут быть успешно преодолены при помощи использования некоторых эффектов квантовой физики. Следствием этого является то, что крошечные наномагниты могут левитировать в среде статичного магнитного поля, сохраняя стабильность, а ответственным за все это является квантовый угловой момент вращения электронов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые обуздали "дикие" электроны, движущиеся по графену

Управление электронамиГрафен, необычная форма углерода, кристаллическая решетка которого имеет толщину в один атом, обладает целым рядом уникальных свойств. Этот материал является одним из лучших проводников электрического тока за счет того, что "неуправляемые" электроны движутся в этом материале практически по прямой, не встречая препятствий, т.е. без электрического сопротивления. Это является одновременно и сильной и слабой стороной графена, ведь для использования материала в электронике требуются способы управления текущим через него электрическим током.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

Ученые "укоротили" импульс лазерного света до рекордного на сегодняшний день значения

Импульс лазерного светаИсследователи из Швейцарского федерального технологического института (Swiss Federal Institute of Technology, ETH) в Цюрихе преуспели в создании нового рентгеновского лазера, который способен вырабатывать сверхкороткие импульсы, длительностью всего в 43 аттосекунды. Используя эти импульсы, ученые могут получить временную разрешающую способность в квинтиллионные доли секунды, что, в свою очередь, позволит наблюдать в режиме замедленной съемки за движением электронов во время химических реакций.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

"Подмена" электрона мюоном позволила ученым более точно измерить размер протона

Экспериментальная установкаНапомним нашим читателям, что одним из главных научных прорывов в 2010 году было измерение радиуса протона при помощи лазерной спектрометрии так называемого мюонного водорода, вещества, ядро атома которого состоит из протона, а вращающийся вокруг ядра электрон заменен его ближайшим "кузеном" из семейства мюонов. Полученные учеными данные позволили с более высокой точностью определить радиус распределения заряда протона, который оказался на четыре процента меньше, чем значения, полученные при помощи обычного водорода. Это серьезное расхождение привлекло большое внимание научного сообщества из-за его несоответствия со Стандартной Моделью физики элементарных частиц.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
25 сентября 2017 | Новости науки и техники

Физики обнаружили уникальную частицу-трианион, обладающую колоссальной стабильностью

Частица-трианионИсследователи из университета Содружества Вирджинии (Virginia Commonwealth University) во время экспериментов создали новую уникальную частицу-трианион, которая обладает самой высокой стабильностью среди всех подобных известных частиц. Отметим, что анионами называют частицы, атомы или молекулы, с отрицательным электрическим зарядом, а трианионами (tri-anion) называют частицы, в которых содержится на три электрона больше, чем протонов. Все известные трианионы крайне нестабильны из-за электрического дисбаланса в их структуре. Они быстро теряют свои "лишние" электроны, что нарушает ход химических реакций с их участием.
 | Опубликовано Informatic | Подробнее | Комментарии: 1
21 сентября 2017 | Новости науки и техники

Сверхкороткие импульсы света позволили ученым увидеть процесс возникновения "внутриатомных" экситонов

Изучение внутриатомных экситоновКогда мощное рентгеновское излучение "освещает" различные материалы или большие молекулы, электроны выбиваются из их мест возле ядра атома. В течение долгого времени ученые считали, что высвобожденный электрон и оставшаяся положительно заряженная "дырка" в электронной оболочке атома формируют квазичастицу под названием "внутриатомный экситон", подобно обычным экситонам, образующимся в среде полупроводниковых материалов. Но до последнего времени у ученых не имелось ни одного доказательства существования этих внутриатомных экситонов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
15 сентября 2017 | Новости науки и техники

Физики нашли оптимальные условия для максимально эффективной работы лазерных плазменных ускорителей

Лазерно-плазменный ускоритель электроновТрадиционные ускорители электронов давно уже стали одним из основных видов научных инструментов, чрезвычайно интенсивные и короткие импульсы излучения, вырабатываемые синхротронами и лазерами на свободных электронах, позволяют ученым изучать материю и процессы, происходящие на атомарном масштабе. Но даже самые маленькие ускорители электронов занимают сейчас площадь, сопоставимую с площадью футбольного поля. Альтернативной традиционным технологиям ускорения электрона является лазерно-плазменный метод ускорения, которые при небольших размерах ускорителя позволяет получить луч разогнанных электронов высокой интенсивности. Но у ускорителей такого типа есть один недостаток - при их помощи очень тяжело получить устойчивый луч электронов со стабильной яркостью. И эта проблема была решена физиками из исследовательского центра HZDR (Helmholtz-Zentrum Dresden-Rossendorf), Германия, которым удалось определить ряд параметров для создания оптимальных условий работы лазерно-плазменного ускорителя электронов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые заставили электроны "течь" по графену подобно жидкости

Движение электронной жидкостиВ ходе своих последних экспериментов ученые из Института изучения графена Манчестерского университета обнаружили условия, при которых электроны, двигающиеся по графену, ведут себя весьма необычным способом. Такое специфическое движение электронов дает ученым лучшее понимание физических процессов в электропроводящих материалах, а в недалеком будущем эти самые процессы можно будет использовать при разработке наноэлектронных схем быстрых и высокоэффективных компьютерных чипов следующего поколения.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Кубиты-триггеры - основа радикально новой архитектуры квантовых вычислительных систем

Квантовые битыУченые и инженеры из университета Нового Южного Уэльса (University of New South Wales), Австралия, изобрели радикально новую архитектуру квантовых вычислительных систем, основой которой являются так называемые кубиты-триггеры. Использование такого типа кубитов сделает разработку и изготовление квантовых чипов, предназначенных для крупномасштабных и масштабируемых квантовых вычислительных систем, намного более дешевым и простым, чем это было возможно ранее.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Начал работу самый большой и мощный в мире рентгеновский лазер

Рентгеновский лазер XFEL4 сентября 2017 года состоялось официальное включение в работу самого большого и самого мощного на сегодняшний день рентгеновского лазера на свободных электронах European X-ray Free Electron Laser (XFEL). Лазер XFEL, на сооружение которого было потрачено около миллиарда евро, представляет собой линейный ускоритель, имеющий несколько "портов" для вывода генерируемого излучения, размещенный в недрах подземного туннеля, общей длиной 3.4 километра. Лазер располагается на территории Научно-исследовательского центра DESY в Гамбурге, Германия. При помощи сверхкоротких вспышек рентгеновского излучения, генерируемых лазером XFEL, ученые смогут составлять трехмерные изображения структур молекул, других частиц биологического происхождения, исследовать внутреннюю структуру и процессы, происходящие внутри различных материалов, и многое другое. При этом, съемка будет производиться со скоростью и с таким уровнем детализации, которые ранее были просто недостижимы.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Начата подготовка к запуску самой большой в мире рентгеновской лазерной "пушки"

Лазер XFELВ этом месяце начнет работать новый рентгеновский лазер на свободных электронах European X-ray Free Electron Laser (XFEL), который, после вывода на полную мощность, будет способен вырабатывать 27 тысяч импульсов в секунду, что в 200 раз больше, чем вырабатывает самый быстрый на сегодняшний день рентгеновский лазер, расположенный в Калифорнии, США. Лазер XFEL не будет использоваться для поражения противника или для стрельбы по опасным астероидам, он будет использоваться исключительно для научных целей в качестве сверхвысокоскоростной рентгеновской камеры, обеспечивающей самую высокую разрешающую способность съемки.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

"Нанопроводниковые" транзисторы с фотонным управлением - новый путь к реализации технологий оптических вычислений

Нанопроводниковый транзистор с фотонным управлениемИдея замены электронов фотонами света и создание вычислительных систем, способных работать буквально со скоростью света, витает в научном сообществе уже достаточно долго. Ученые из разных стран разработали ряд фотонно-электронных компонентов, которые смогут стать в будущем основой таких систем, однако, в большинстве случаев, при работе компонентов все же требуется выполнять преобразование оптических сигналов в электрические и наоборот при помощи чисто электронных цепей. А это, в свою очередь, значительно снижает эффективность и быстродействие вычислительной системы.
 | Опубликовано Electronic | Подробнее | Комментарии: 1

Ученые получили рекордно короткие импульсы света

Лазерная установкаИсследовательская группа из университета Центральной Флориды (University of Central Florida) продемонстрировала технологию, позволяющие получить рекордно короткие импульсы рентгеновского излучения, длительность которых составляет 53 аттосекунды. Отметим, что группа, возглавляемая профессором Зенгу Чангом (Zenghu Chang), побила свой собственный рекорд, установленный ими еще в 2012 году, который на то время составлял 67 аттосекунд.
 | Опубликовано Informatic | Подробнее | Комментарии: 0